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Overview : Runge-Kutta Methods

The Taylor’s series method of solving differential equations numerically is
handicapped by the problem of finding the higher order derivatives.

Euler’s method is less efficient in practical problems since it requires h to
be small for obtaining reasonable accuracy.

The Range-Kutta methods do not require the calculations of higher
order derivatives and they are designed to give greater accuracy with the
advantage of requiring only the function values at some selected points on
the sub-interval.

These methods agree with Taylor’s series solution upto the terms of hr

where r is the order of the Runge-Kutta method.

In the lecture, we discuss Runge-Kutta methods of orders upto 4.
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Overview : Predictor-Corrector Methods

A predictor-corrector method is an algorithm that proceeds in two steps.
First, the prediction step calculates a rough approximation of the desired
quantity. Second, the corrector step refines the initial approximation using
another means.

This is not unlike an implementation of Newton-Raphson. In that method
we require an initial guess (we “predict”) and then the Newton-Raphson
approach tells us how to iterate (or “correct”) our latest approximation.

The main difference here is that we have a systematic way of obtaining
the initial prediction.

We discuss some predictor-corrector methods in the lecture.
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Introduction

Runge-Kutta method is a numerical technique used to solve ordinary
differential equation of the form

dy

dx
= f (x , y) given y(x0) = y0.

Runge-Kutta methods (also called as RK methods) are the generalization
of the concept used in Modified Euler‘s method. They are iterative
methods to calculate the solution of a differential equation. Starting from
an initial condition, they calculate the solution forward step by step.

The RK methods were first studied by the German mathematicians Carle
Runge and Martin Kutta around 1900. Modern developments are mostly
due to John Butcher in the 1960s.
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Introduction

The basic reasoning behind Runge-Kutta methods is outlined in the
following.

In Modified Euler’s method, the slope of the solution curve has been
approximated with the slopes of the curve at the end points of the each
sub interval in computing the solution.

The natural generalization of this concept is computing the slope by
taking a weighted average of the slopes taken at more number of
points in each sub interval. However, the implementation of the scheme
differs from Modified Euler’s method so that the developed algorithm is
explicit in nature. The final form of the scheme is of the form

yi+1 = yi + (weighted average of the slopes) for i = 0, 1, 2, . . .

where h is the step length and yi and yi+1 are the values of y at xi and
xi+1 respectively.
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Introduction

In general, the slope is computed at various points x in each sub interval
[xi , xi+1] and multiplied them with the step length h and then weighted
average of it is then added to yi to compute yi+1.

Thus the RK method with r slopes called as r-stage RK method can be
written as

K1 = hf (xi , yi )

K2 = hf (xi + c2h, yi + a21K1)

K3 = hf (xi + c3h, yi + a31K1 + a32K2)
... =

...
...

...

Kr = hf (xi + crh, yi + ar1K1 + ar2K2 + · · ·+ arr−1Kr−1)

and

yi+1 = yi + (W1K1 + W2K2 + · · ·+ WrKr ) for i = 0, 1, 2, . . . .
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Runge-Kutta Method of Order p

To determine the parameters

ci ’s for 2 ≤ i ≤ r (coefficients for x)

aij ’s for 1 ≤ j < i ≤ r (coefficients for y)

Wi ’s for 1 ≤ i ≤ r (weights)

in the above equation, yi+1 defined in the scheme is expanded interms of
step length h.

The resultant equation is then compared with Taylor series expansion of
the solution of the differential equation upto a certain number of terms,
say p.

Then the r-stage RK method will be of order p or is an pth order
Runge-Kutta method (called Runge-Kutta method of order p).
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The Butcher Tableau

To specify a particular method, we need to provide the parameters :

r (number of stages)

ci ’s for 2 ≤ i ≤ r (coefficients for x)

aij ’s for 1 ≤ j < i ≤ r (coefficients for y)

Wi ’s for 1 ≤ i ≤ r (weights).

These data are usually arranged in a co-called Butcher tableau.

0
c2 a21

c3 a31 a32
...

...
...

...
cr ar1 ar2 . . . arr−1

W1 W2 . . . Wr−1 Wr
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Runge-Kutta Method of Order 1

Consider
dy

dx
= f (x , y) given y(x0) = y0.

The Euler’s formula for first approximation to the solution of the above
differential equation is given by

yi+1 = yi + hf (xi , yi ) = yi + hy ′(xi ) [ since y ′ = f (x , y) ].

Also

yi+1 = yi + hy ′(xi ) +
h2

2!
y ′′(xi ) +

h2

2!
y ′′′(xi ) + · · · .

Clearly the Euler’s method agrees with the Taylor’s series solution upto the
term in h.

Hence Euler’s method is the Runge-Kutta method of first order.
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Runge-Kutta Method of Order 2

Now, consider the case r = 2 to derive the 2-stage (second order) RK
method. For this

K1 = hf (xi , yi )

K2 = hf (xi + c2h, yi + a21K1)

yi+1 = yi + (W1K1 + W2K2) for i = 0, 1, 2, . . . .

Now by Taylor series expansion

y(xi+1) = y(xi ) + hy ′(xi ) +
h2

2!
y ′′(xi ) +

h2

2!
y ′′′(xi ) + O(h4)

yi+1 = yi + hfi +
h2

2!
(fx + fy f ) +

h3

3!
(fxx + 2fxy f + fyy f 2 + fy (fx + fy f )) + O(h4)
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Runge-Kutta Method of Order 2

Also

K1 = hfi

K2 = hf (xi + c2h, yi + a21K1) = hf (xi + c2h, yi + a21hfi )

= h

[
fi + c2hfx + a21hfi fy +

(c2h)2

2!
fxx +

(a21hfi )
2

2!
fyy + (c2h)(a21hfi )fxy

]
+ O(h4)

(by Taylor’s series expansion of two variables)

yi+1 = yi + (W1 + W2)hfi + h2(W2c2fx + W2a21ffy ) +
h3

2
W2(c2

2 a21ffxy + a2
21f 2fyy ) + O(h4)

Now by comparing the equal powers of h in yi+1 of two equations, we get

W1 + W2 = 1, c2W2 =
1

2
and a21W2 =

1

2
.

The solution of this system is

a21 = c2, W2 =
1

2c2
and W1 = 1− 1

2c2
.

where c2 is any arbitrary constant not equal to zero.
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Runge-Kutta Method of Order 2

Since 2-stage RK method compares with Taylor series upto h2 for any
value of c2, the 2-stage RK method is of order two and hence this scheme
is denoted in many text books as a second order RK method.

For these values of a21,W2,W1, there exists an infinite number of
2-stage Runge-Kutta methods of order 2.

Now, to give some numerical values to a21,W2,W1 ; first the value of c2

has to be fixed.

Generally the value of c2 is fixed such that the values of a21,W2,W1 are
integers or some real numbers which easy to remember.

Two of such cases, the values of c2 are 1
2 and 1 respectively.
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Runge-Kutta Method of Order 2

Let c2 = 1, a21 = 2,W2 = W1 = 1
2 .

The corresponding 2-stage (second order) RK method is

K1 = hf (xi , yi )

K2 = hf (xi + h, yi + K1)

yi+1 = yi +
K1 + K2

2
for i = 0, 1, 2, . . . .

or equivalently

yi+1 = yi +
h

2

[
f (xi , yi ) + f (xi + h, yi + hf (xi , yi ))

]
for i = 0, 1, 2, . . .

which is nothing but the Modified Euler’s method.
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Butcher Tableau for Runge-Kutta Method of Order 2

Here are three methods based on convenient choices of c2. Note that the
first two methods are due to Runge.

The Butcher tableau for Runge-Kutta method of order 2 are as follows:

0

1
2

1
2

0 1

0

1 1

1
2

1
2

0

2
3

2
3

1
4

3
4
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Runge-Kutta Method of Order 3

The thrid order Runge-Kutta method is given by

yi+1 = yi +
1

6

[
K1 + 4K2 + K3

]
for i = 0, 1, 2, . . . ,

where

K1 = hf (xi , yi )

K2 = hf (xi +
h

2
, yi +

K1

2
)

K3 = hf (xi + h, yi − K1 + 2K2)
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Butcher Tableau for Runge-Kutta Method of Order 3

The Butcher tableau for Runge-Kutta method of order 3 are as follows:

0

1
2

1
2

1 -1 2

1
6

2
3

1
6

0

1 1

1
2

1
4

1
4

1
6

1
6

2
3

0

1
3

1
3

1 −1 2

0 3
4

1
4

0

2
3

2
3

2
3 0 2

3

1
4

3
8

3
8

0

2
3

2
3

2
3

1
3

1
3

1
4 0 3

4

0

2
3

2
3

0 −1 1

0 3
4

1
4
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Runge-Kutta Method of Order 4

The fourth order Runge-Kutta method is given by

yi+1 = yi +
1

6

[
K1 + 2K2 + 2K3 + K4

]
for i = 0, 1, 2, . . . ,

where

K1 = hf (xi , yi )

K2 = hf (xi +
h

2
, yi +

K1

2
)

K3 = hf (xi +
h

2
, yi +

K2

2
)

K4 = hf (xi + h, yi + K3)
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Runge-Kutta Method of Order 4

In each step of fourth-order Runge-Kutta method, the derivative is
evaluated four times:

once at the initial point,

twice at trial midpoints, and

once at a trial endpoint.

From these derivatives the final function value yn+1 (shown as a filled dot)
is calculated.
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Butcher Tableau for Runge-Kutta Method of Order 4

The Butcher tableau for Runge-Kutta method of order 4 are as follows:

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

0

1
4

1
4

1
2

0 1
2

1 1 −2 2

1
6

0 2
3

1
6

0

1
2

1
2

0 −1 1

1 −1 3
2

1
2

1
12

2
3

1
12

1
6

0

1 1

1
2

3
8

1
8

1 −2 −1 4

1
6

1
12

2
3

1
12

0

1
3

1
3

2
3

−1
3

1

1 1 −1 1

1
8

3
8

3
8

1
8

0

2
3

2
3

1
3

1
12

1
4

1 − 5
4

1
4

2

1
8

3
8

3
8

1
8
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Working Rule

For a given point (x0, y0) in the (unknown) solution curve, we are going to
find the ordinate of given x .

Divide the interval connecting x0 and x into n subintervals each of width
h, the value of h is quite small.

To apply one of the Runge-Kutta methods, we should calculate the
weights Ki at (x0, y0) to find y1 = y(x0 + h).

Similarly, the value of y in the second interval is obtained by replacing x0

by x1 and y0 by y1 in the Runge-Kutta method and we obtain y2.

In general, to find yn substitute xn−1, yn−1 in the expression for K1,K2 etc.

To evaluate yn+1, we need information only at the point yn. Information
at the points yn−1, yn−2 etc. are not directly required . Hence
Runge-Kutta methods are step methods.
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Exercises

1 Compute y(0.1) and y(0.2) by Runge-Kutta method of fourth order
for the differential equation

dy

dx
= xy + y2, y(0) = 1.

2 Use Runge-Kutta method of fourth order to find y(0.1), given that

dy

dx
=

1

x + y
, y(0) = 1.

3 Given y ′ = x2 − y , y(0) = 1, find y(0.1) using Runge-Kutta method
of fourth order.

4 Using 4th order Runge-Kutta method, find y(0.1), y(0.2) and y(0.3),
given that

dy

dx
= 1 + xy , y(0) = 2.
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Exercises

5 Using 4th order Runge-Kutta method, evaluate the value of y when
x = 1.1, given that

dy

dx
+

y

x
=

1

x2
, y(1) = 1.

6 Apply third order Runge-Kutta method to find an approximate value
of y when x = 0.2, given that

dy

dx
= x + y , y(0) = 1.

7 Using Runge-Kutta method of fourth order, solve

dy

dx
=

y2 − x2

y2 + x2

with y(0) = 1 at x = 0.2, 0.4.
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Exercises

8 Apply Runge-Kutta method to find an approximate value of y when
x = 0.2 in steps of 0.1 if

dy

dx
= x + y2

given that y = 1 where x = 0.
9 Using Runge-Kutta method of fourth order, solve for y at x = 1.2, 1.4

from
dy

dx
=

2xy + ex

x2 + xex

given x0 = 1, y0 = 0.
10 Given

dy

dx
= y − x

where y(0) = 2, find y(0.1) and y(0.2) correct to 4 decimal places by
I Runge-Kutta second order formula
I Runge-Kutta fourth order formula.
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Exercises

11 Given
dy

dx
= 1 + y2

where y(0) = 0, find y(0.2), y(0.4) and y(0.6) by Runge-Kutta fourth
order formula.

12 Taking h = 0.5, solve the initial value problem for x = 0.05 of the
differential equation

dy

dx
= 3x +

y

2
, y(0) = 1.

I Euler’s method
I Modified Euler’s method
I Runge-Kutta method of order 4.
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Solving Simultaneous First Order Differential Equations :
Runge-Kutta Methods

Consider the simultaneous differential equations of the type

dy

dx
= f (x , y , z) (1)

and
dz

dx
= g(x , y , z) (2)

with initial conditions y(x0) = y0 and z(x0) = z0 can be solved by
Runge-Kutta methods.
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Starting at (xi , yi , zi ) and taking the step-sizes for x , y , z to be h, k , `
respectively, we have the following for the Runge-Kutta methods of fourth
order.

K1 = h f (xi , yi , zi )

K2 = h f (xi +
h

2
, yi +

K1

2
, zi +

J1

2
)

K3 = h f (xi +
h

2
, yi +

K2

2
, zi +

J2

2
)

K4 = h f (xi + h, yi + K3, zi + J3)

J1 = h g(xi , yi , zi )

J2 = h g(xi +
h

2
, yi +

K1

2
, zi +

J1

2
)

J3 = h g(xi +
h

2
, yi +

K2

2
, zi +

J2

2
)

J4 = h g(xi + h, yi + K3, zi + J3)

yi+1 = yi +
1

6

[
K1 + 2K2 + 2K3 + K4

]
for i = 0, 1, 2, . . . ,

and

zi+1 = zi +
1

6

[
J1 + 2J2 + 2J3 + J4

]
for i = 0, 1, 2, . . . .
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Exercises

13 Solve the system of differential equations

dy

dx
= xz + 1,

dz

dx
= −xy

for x = 0.3(0.3)0.9 using Runge-Kutta fourth order formula. Initial
values are x = 0, y = 0, z = 1.

14 Using Runge-Kutta method of order 4, find the approximate values of
x and y at t = 0.2 for the following system:

dx

dt
= 2x + y ,

dy

dt
= x − 3y

given that when t = 0, x = 0, y = 0.5.
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Solving Second Order Differential Equations by
Runge-Kutta Methods

Let us describe the fourth order Runge-Kutta method for solving the
second order differential equation

d2y

dx2
= y ′′ = f (x , y , y ′). (3)

If we put y ′ = z , then y ′′ = z ′. So the differential equation becomes

z ′ = f (x , y , z).

We have now the simultaneous differential equations

dy

dx
= z (that is, f1 ≡ z) and z =

dz

dx
= f (x , y , z) (that is, f2 ≡ f )

where f1 means f1(x , y , z) and f2 denotes f2(x , y , z).
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Exercises

15 Given
d2y

dx2
− y3 = 0, y(0) = 10, y ′(0) = 5.

Evaluate y(0.1) using Runge-Kutta method.
16 Use the Runge-Kutta method with fourth order accuracy to determine

the approximate value of y at x = 0.1 if y satisfies the differential
equation

d2y

dx2
− x2 dy

dx
− 2xy = 1, y(0) = 1, y ′(0) = 0.

17 Using Runge-Kutta method, solve

d2y

dx2
= x

(
dy

dx

)2

− y2

for x = 0.2 correct to 4 decimal places. Initial conditions are
y(0) = 1, y ′(0) = 0.
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Introduction : Predictor-Corrector Methods

A predictor-corrector method is an algorithm that proceeds in two steps.
First, the prediction step calculates a rough approximation of the desired
quantity. Second, the corrector step refines the initial approximation using
another means. This involves

The predictor step. We use an explicit method to obtain an
approximation yp

n+k to yn+k .

The corrector step. We use an implicit method, but with the
predicted value yp

n+k on the right-hand side in the evaluation of fn+k .
We use f p

n+k to denote this approximate (predicted) value of fn+k .

We can then go on to correct again and again. At each step we put
the latest approximation to yn+k in the right-hand side of the scheme
to generate a new approximation from the left-hand side.
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Introduction : Predictor-Corrector Methods

What has been done in Newton-Raphson method?

This is not unlike an implementation of Newton-Raphson. In that method
we require an initial guess (we “predict”) and then the Newton-Raphson
approach tells us how to iterate (or “correct”) our latest approximation.

The main difference here is that we have a systematic way of obtaining
the initial prediction.

It is sufficient for our purposes to illustrate the idea of a
predictor-corrector method using the simplest possible pair of methods.

We use Euler’s method to predict and the trapezium method to correct.
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Predictor-Corrector Methods

Consider the differential equation

dy

dx
= f (x , y) given y(x0) = y0.

We divide the range for x into a number of step sizes of equal width h. If
xi and xi+1 are two consecutive points, then xi+1 = xi + h.

Euler’s formula for the above differential equation

yi+1 = yi + hf (xi , yi ), i = 0, 1, 2, . . . . (4)

The modified Euler’s formula is

yi+1 = yi +
h

2

[
f (xi , yi ) + f (xi+1, yi+1)

]
, i = 0, 1, 2, . . . . (5)
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Predictor-Corrector Methods

The value of yi+1 is first estimated by (4) and this value is inserted on the
right side of (5) to get a better approximation for yi+1.

This value of yi+1 is again substituted in (5) to find a still better
approximation of yi+1.

This process is repeated until two consecutive values of yi+1 are almost
equal.

This technique of refining an initially crude estimate by means of more
accurate formula is known as predictor-corrector methods. Equation (4)
is called the predictor and (5) is called corrector.
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Predictor-Corrector Methods

In the method described so far to solve a differential equation over an
interval only the value of y at the beginning of the interval was required.

In the predictor and corrector methods, four prior values of y are
needed to evaluate the value of y at xi+1.

A predictor formula is used to predict the value yi+1 of y at xi+1 and
then a corrector formula is used to improve the value of yi+1.
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Milne’s Method

Consider the first order differential equation

dy

dx
= f (x , y) given y(x0) = y0.

Newton’s forward difference formula can be written as

f (x , y) = f0 + n∆f0 +
n(n − 1)

2!
∆2f0 +

n(n − 1)(n − 2)

3!
∆3f0 + · · · . (6)

Substituting this in the relation

y4 = y0 +

∫ x0+4h

x0

f (x , y)dx

we get

y4 = y0 +

∫ x0+4h

x0

[
f0 + n∆f0 +

n(n − 1)

2!
∆2f0 + · · ·

]
dx .
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Milne’s Method

Let x = x0 + nh. Therefore

y4 = y0 + h

∫ 4

0

[
f0 + n∆f0 +

n(n − 1)

2!
∆2f0 + · · ·

]
dn

= y0 + h

[
4f0 + 8∆f0 +

20

3
∆2f0 +

8

3
∆3f0 + · · ·

]
= y0 + h

[
4y ′0 + 8(E − 1)y ′0 +

20

3
(E 2 − 2E + 1)y ′0 +

8

3
(E 3 − 3E 2 + 3E − 1)y ′0

]
(neglecting fourth and higher order differences)

= y0 + h

[
4y ′0 + 8(y ′1 − y ′0) +

20

3
(y ′2 − 2y ′1 + y ′0) +

8

3
(y ′3 − 3y ′2 + 3y ′1 − y ′0)

]
= y0 + h

[
8

3
y ′1 −

4

3
y ′2 +

8

3
y ′3

]
.
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Milne’s Method

Thus

y4 = y0 +
4h

3

[
2y ′1 − y ′2 + 2y ′3

]
.

If x0, x1, . . . , x4 are any 5 consecutive values of x , then the above equation
can be written as

yn+1,p = yn−3 +
4h

3

[
2y ′n−2 − y ′n−1 + 2y ′n

]
.

This is called Milne’s Predictor formula (the subscript p indicates that it
is a predicted value).

This formula can be used to predict the value of y4 when those of
y0, y1, y2, y3 are known.
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Milne’s Method

To get a corrector formula we substitute Newton’s formula (6) in the
relation

y2 = y0 +

∫ x0+2h

x0

f (x , y)dx

and we get

y2 = y0 +

∫ x0+2h

x0

[
f0 + n∆f0 +

n(n − 1)

2!
∆2f0 + · · ·

]
dx

= y0 + h

∫ 2

0

[
f0 + n∆f0 +

n(n − 1)

2!
∆2f0 + · · ·

]
dn putting x = x0 + nh

= y0 + h

[
2f0 + 2∆f0 +

1

3
∆2f0 + · · ·

]
= y0 + h

[
2y ′0 + 2(E − 1)y ′0 +

1

3
(E 2 − 2E + 1)y ′0

]
(neglecting higher order differences)

= y0 + h

[
2y ′0 + 2(y ′1 − y ′0) +

1

3
(y ′2 − 2y ′1 + y ′0)

]
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Milne’s Method

Thus

y2 = y0 +
h

3

[
y ′0 + 4y ′1 + y ′2

]
.

If x0, x1, x2 are any three corrective values of x , the above relation can be
written as

yn+1,c = yn−1 +
h

3

[
y ′n−1 + 4y ′n + y ′n+1

]
This is known Milne’s corrector formula where the suffix c stands for
corrector.

An improved value of y ′n+1 is computed and again the corrector formula is
applied until we get yn+1 to the derived accuracy.
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Adams-Bashforth Method

Consider
dy

dx
= f (x , y) with y(x0) = y0.

Newton’s backward interpolation formula can be written as

f (x , y) = f0 + n∇f0 +
n(n + 1)

2!
∇2f0 +

n(n + 1)(n + 2)

6
∇3f0 + · · ·

where n = x−xn
h and f0 = f (x0, y0).
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Adams-Bashforth Method

Substituting this

y1 = y0 +

∫ x0+h

x0

f (x , y)dx , (7)

we get

y1 = y0 +

∫ x0+h

x0

[
f0 + n∇f0 +

n(n + 1)

2!
∇2f0 + · · ·

]
dx

= y0 +

∫ 1

0

[
f0 + n∇f0 +

n(n + 1)

2!
∇2f0 + · · ·

]
dn (putting x = x0 + nh)

= y0 + h

[
f0 +

1

2
∇f0 +

5

12
∇2f0 +

3

8
∇3f0 + · · ·

]

Neglecting fourth and higher order differences and expressing ∇f0, ∇2f0,
∇3f0 in terms of function values we get

y1 = y0 +
h

24

[
55y ′0 − 59y ′−1 + 37y ′−2 − 9y ′−3

]
.
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Adams-Bashforth Formula

This can also be written as

yn+1,p = y0 +
h

4

[
55y ′n − 59y ′n−1 + 37y ′n−2 − 9y ′n−3

]
.

This is called Adams-Bashforth formula and is used as a predictor
formula. The notation p indicates that it is a predicted value.

A corrector formula can be derived in a similar manner by using Newton’s
backward difference formula at f1.

That is,

f (x , y) = f1 + n∇f1 +
n(n + 1)

2!
∇2f1 +

n(n + 1)(n + 2)

3!
∇3f1 + · · ·
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Adams-Moulton Corrector Formula

Substituting this in (7), we get,

y1 = y0 +

∫ x1

x0

[
f1 + n∇f1 +

n(n + 1)

2!
∇2f1 + · · ·

]
dx

= y0 + h

∫ 0

−1

[
f1 + n∇f1 +

n(n + 1)

2!
∇2f1 + · · ·

]
dn (putting x = x1 + nh)

= y0 + h

[
f1 −

1

2
∇f1 −

1

12
∇2f1 +

1

24
∇3f1 − · · ·

]

Neglecting 4th and higher order differences and expressing ∇f1, ∇2f1,
∇3f1 in terms of function values, we get

y1 = y0 +
h

24

[
9f1 + 19f0 − 5f−1 + f−2

]
.
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Adams-Moulton Corrector Formula

This can also be written as

yn+1,c = yn +
h

24

[
9f p

n+1 + 19fn − 5fn−1 + fn−2

]
.

This is called Adams-Moulton corrector formula.

The subscript c indicates that the value obtained in the corrected value
and the superscripts p on the right indicates that the predicted value of
yn+1 should be used for computing the value of f (xn−1, yn−1).
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Important Note

To apply a predictor-corrector method, we need four starting values of y
which can be calculated by any of the numerical methods.

In practice, the 4th order Runge-Kutta method is found to be most useful.
Once the predictor-corrector method starts, it is very effective, as past
information is effectively used.

To apply Milne’s predictor-corrector method, we require 4 prior values of y .

If these values are not given, we can determine them by using Taylor’s
series, Euler’s or Runge-Kutta methods.
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Exercises

18 Given
dy

dx
=

1

x + y
, y(0) = 2.

If y(0.2) = 2.09, y(0.4) = 2.17 and y(0.6) = 2.24, find y(0.8) using
Milne’s method.

19 Using Milne’s predictor-corrector formula, find y(0.4), for the
differential equation

dy

dx
= 1 + xy , y(0) = 2.

20 Given
dy

dx
=

1

2
(1 + x2)y2

and y(0) = 1, y(0.1) = 1.6, y(0.2) = 1.12, y(0.3) = 1.21. Evaluate
y(0.4) by Milne’s predictor-corrector method.
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Exercises

21 Find by Milne’s method for the equation

y ′ = y − x2, y(0) = 1,

by obtaining the starting values by Taylor’s series method.

22 Using Adams-Bashforth method find y(4.4) given

5xy ′ + y2 = 2, y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097

and y(4.3) = 1.0143.

23 Using Adams-Bashforth method determine y(1.4) given that

y ′ − x2y = x2, y(1) = 1.

Obtain the starting values from the Euler’s method.
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Exercises

24 Using Adams-Bashforth method find y(0.4) given that

y ′ = 1 + xy , y(0) = 2.

25 Apply Milne’s method to find y(0.4) of the initial value problem

y ′ = x − y2, y(0) = 1.

Starting solutions required are to be obtained using Runge-Kutta
method of order 4 using step value h = 0.1.

26 Using Milne’s method, find y(4.5) given

5xy ′ + y2 − 2 = 0

with y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.0143,
y(4.4) = 1.0187.
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Exercises

27 Given
y ′ = x(x2 + y2)e−x , y(0) = 1,

find y at x = 0.1, 0.2, and 0.3 by Taylor’s series method and compute
y(0.4) by Milne’s method.

28 Using Runge-Kutta method of order 4, find y for x = 0.1, 0.2, 0.3
given that

dy

dx
= xy + y2, y(0) = 1.

Continue the solution at x = 0.4 using Milne’s method.

29 If
dy

dx
= 2exy , y(0) = 2,

find y(4) using Adams predictor-corrector formula by calculating
y(1), y(2) and y(3) using Euler’s modified formula.
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Exercises

30 Given
y ′′ + xy ′ + y = 0, y(0) = 1, y ′(0) = 0

obtain y for x = 0.1, 0.3 by any method. Further, continue the
solution by Milne’s method to calculate y(0.4).

31 Given
dy

dx
= 1 + y2

where y = 0 when x = 0. Find y(0.8) by Adams-Bashforth formula.
Find y(0.2), y(0.4), y(0.6) by fourth order Runge-Kutta-method.

32 Given
dy

dx
= 1 + y2

where y = 0 when x = 0. Find y(0.8) and y(1.0) by Milne’s formula.
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Exercises

33 The differential equation y ′ = x2 + y2 − 2 satisfies the following data:

x y

-0.1 1.0900
0 1.0000

0.1 0.8900
0.2 0.7605

Use Milne’s method to obtain the value of y(0.3).

34 Using Adams-Bashforth predictor-corrector formulae, evaluate y(1.4)
if y satisfies

dy

dx
+

y

x
=

1

x2

and y(1) = 1, y(1.1) = 0.996, y(1.2) = 0.986, y(1.3) = 0.972.
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Exercises

35 Find y(2) by Milne’s method if y(x) is the solution of

dy

dx
=

1

2
(x + y)

assuming y(0) = 2, y(0.5) = 2.636, y(1) = 3.595, y(1.5) = 4.968.
36 Tabulate by Milne’s method the numerical solution of

dy

dx
= x + y

from x = 0.2 to x = 0.3 given that

x y

0 1
0.05 1.0526
0.1 1.1104

0.15 1.1737
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Exercises

37 Solve the differential equation

dy

dx
= x2 + y2 − 2

given y(−0.1) = 1.09, y(0) = 1, y(0.1) = 0.89. Find y(0.2) by series
expansion and find y(0.3) by Milne’s method.

38 Solve the initial value problem

dy

dx
= 1 + xy2, y(0) = 1

for x = 0.4, 0.5 by using Milne’s method when it is given that

x 0.1 0.2 0.3

y 1.105 1.223 1.355
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Exercises

39 Using the Adams method, solve the simultaneous differential
equations

dy

dx
= xy + z

dz

dx
= y − z

with y(0) = 0, z(0) = 1.

40 Use Milne’s method to solve the simultaneous differential equations

dy

dx
= x + z

dz

dx
= −xy

with y(0) = 1, z(0) = 0.
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